Math 31 Unit 4 Exam

23 May 2008

Name

[marks]

1. Solve each equation. State your answer exactly and also to 5 decimal places.

a)
$$\ln(2x - 3) = \frac{5}{2}$$

[4]

	exact value	value to 5 decimal places
x		

b) $e^{5-3x} = 6$

	exact value	value to 5 decimal places
<i>x</i>		

2. Express as a single logarithm: a) $3\ln(x-5) - 2\ln(2-3x) + \ln(x+1)$

[4]

b)
$$\frac{1}{2}\ln(2x-1) - \frac{1}{3}\ln(x^2 - 3x + 5)$$

3. Differentiate y with respect to x. 3x

a)
$$y = \frac{e^{3x}}{x^2 - 4}$$

b) $y = e^{\tan(\sqrt{x})}$

[18]

c)
$$y = \frac{\ln x}{x^3}$$

d)
$$y = \ln \sqrt{\frac{3x+5}{2x-1}}$$

e)
$$y = \log_5(2x^2 + 5x + 2)$$

f)
$$y = x^6 + 6^x$$

4. Use logarithmic differentiation to find the derivative of each:

a)
$$x^4 e^x \sqrt{x^2 + 2x - 3}$$

[9]

b)
$$y = \frac{x\sqrt{2x+8}}{(x^3-2)(2x+3)}$$

c) $y = (\sin x)^{\cos x}$

- 5. The initial count in a bacteria culture was 800. After 1 h it was 3200.
 - a) Determine the function which expresses the bacterial culture population, P, as a function of the time, t, in hours.

[4]

b) Find the rate of growth after 15 min.

6. Given that $\frac{dy}{dx} = 6x^2 - 15$, find the (antiderivative) function, y, if y = 0 when x = 2.

[3]

7. An object moves in a straight line with velocity v = 4t - 6t² with v being measured in metres per second and t is time in seconds.
a) How far does the object move in the first second?

[3]

b) How far does the object move in the first 3 seconds?